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Received 9 October 1995

Abstract. The relaxational dynamics of a(1 + 1)-dimensional directed polymer in random
potential is studied by Monte Carlo simulations. A series of temperature quench experiments
is performed changing waiting timestw. A clear crossover from quasi-equilibrium behaviour
(t � tw) to off-equilibrium behaviour (t � tw) appears in the dynamical overlap function whose
scaling properties are very similar to those found in the three-dimensional spin-glass model. In
the t � tw part, the fluctuation dissipation theorem of the first kind which relates the response
function to the tilt field with the conjugate correlation function, is found violated. These ageing
effects are brought about by the very slow growth of the quasi-equilibrium domain driven by
successiveloop excitationsof various sizes, which form complex network structures.

1. Introduction

Directed polymer in random media (DPRM) [1] is one of the simplest statistical mechanical
models in which quenched randomness plays non-trivial roles as in spin-glasses. It is an
effective model of an elastic string in a random environment, such as a vortex line in an
oxide cuprate superconductor which penetrates the stacked CuO2 layers with point defects
scattered randomly over the layers. In transverse dimensionsd less than two, there is no
free phasebut a pinned phase, i.e. the polymer is mostly pinned around the ground state
and cannot move freely at any finite temperatures. However, there are anomalously large
thermal fluctuations due to the thermal hoppings between the excited states which are nearly
degenerate with the ground state but located far away. They are analogous to the droplet
excitations in the spin-glass phase [2] and bring about non-trivial effects in the pinned phase
[3–6]. One naturally expects that they also have dramatic effects on the dynamics. Actually,
it has been argued in the theory of the transport problem in the vortex glass phase that they
are responsible for the nonlinear current–voltage response [7].

Our interest in the present study is the slow relaxation to equilibrium due to such
anomalous thermal hoppings. We expect that they bring about ageing effects, which are
to some extent similar to those found in the spin-glass phase. In order to clarify this
possibility, we performed temperature quench experiments by a simple heat-bath Monte
Carlo dynamics. The procedure mimics the so-calledIRM experiments in spin-glasses [8]
but the system is perturbed by a smalltilt field which drives one end of the polymer instead
of the magnetic field in spin-glasses which drives the whole spins.

We have found clear evidences of the ageing effects. One is the systematic waiting
time dependence of the dynamical overlap function. The crossover behaviour from quasi-
equilibrium to off-equilibrium behaviour and its scaling properties are, interestingly enough,
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very similar to those found in the spin-autocorrelation function of the three-dimensional
spin-glass model [10]. The second is the violation of the fluctuation dissipation theorem
(FDT) associated with the response to the tilt field. Again the correlation function, which
is conjugate with the response function, shows a clear waiting time dependence. On the
other hand, in contrast with the case of spin-glasses, the response function itself does not
show waiting time dependence. TheFDT which relates the two is violated att � tw, which
coincides with the crossover behaviour in the dynamical overlap function.

In our analysis we also utilize the transfer matrix method for the following two purposes.
Firstly, we check the consistency between the static limit of the data of the dynamical
quantities and the static expectation values. Secondly, we study the relation between the
complex free energy landscape and the relaxational dynamics. Actually we could visually
monitor the thermal jumps between the excited states. The structure of the web of the
excited states is very complex and consists of numerous loop-like structures of various
sizes (see figure 3 below). Since this model is somewhat simpler than spin-glass models,
we believe that understanding the dynamics of this model would give valuable insight into
the glassy dynamics of more complicated systems.

This paper is organized as follows. In section 2 we describe our model and introduce
the Monte Carlo dynamics. In section 3, the elementary process of the dynamics is studied
combined with analysis of the free energy landscape by the transfer matrix method. In
section 4, the procedure of the temperature quench experiment is described. The results
are given in section 5. In section 6, we conclude this paper with some phenomenological
arguments.

2. The model

We study a lattice version of a(1 + 1)-dimensional directed polymer in random media
(DPRM). The Hamiltonian is

Hµ[x] =
N∑

z=1

{g|x(z) − x(z + 1)| + µ(x(z), z)}− hx(N) (1)

wherex(z) (z = 1 . . . N) represents the configuration of the polymer whose length isN . As
shown in figure 1, the polymer is situated on a square lattice anddirectedalong thez-axis
so that overhangs are excluded. We impose the so-called restricted solid on solid (RSOS)
condition, i.e. the steps|x(z) − x(z − 1)| are only allowed to take integer values−1, 0
and 1. We fix one endx(0) at x = 0 while we allow the other endx(N) to move freely.
The first term in the Hamiltonian represents the elastic energy. The second term represents
the random potential which takes random numbers distributed uniformly over−σ 6 µ 6 σ

independently on every lattice site on the square lattice. The last term is the tilt field which
drives the free end andtilts the polymer.

Figure 1. A representation of a configuration of(1 + 1)-dimensionalRSOS DPRM.
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We model the relaxational dynamics of the present model by an ordinary heat-bath
Monte Carlo dynamics as follows. In one micro Monte Carlo step (micro-MCS), we try
to move one segment, say the segment atz = z0. The new position is chosen among the
possible choices allowed by theRSOScondition with the appropriate transition probabilities
so as to satisfy the detailed balance condition. As shown in figure 2, this micro-MCS can be
classified into three cases depending on the positions of the neighbouring segments atz0 −1
andz0 +1, namely cases (a), (b) and (c) which corresponds to|x(z0 −1)−x(z0 +1)| = 0, 1
and 2 respectively. The entire configuration is refreshed by vectorized sub-lattice flippings
in one Monte Carlo step (MCS) (= N micro-MCS). One sub-lattice consists of the even
numbered segmentsz = 2, 4, 6 . . . and the other sub-lattice consists of the odd numbered
segmentsz = 1, 3, 5 . . . .

Figure 2. The three different cases (a), (b) and (c) of the local configuration around a segment
x(z) (see the text for a definition). The possible new states 1, 2 and 3 of the segmentx(z) are
enclosed by boxes.

3. Elementary processes of the dynamics

In this section we consider the elementary processes of the relaxational dynamics in the
present model. In any quenched random system, it is generally essential to understand the
structure of the free energy landscape in order to study the slow relaxational dynamics, which
is unfortunately very hard to do on spin-glass models. However, thanks to the simplicity
of the model, we can try such an attempt on the present model in the following way. We
consider the spatial variation ofPµ(z, x): the probability to find the polymer going through
a particular lattice point(z, x) on a certain sample of random potentialµ. It is defined as

Pµ(z, x) = Zµ(z)−1
∑

configuration

δ(x(z) − x)δ(x(0) − 0) exp(−βH[x, µ]) (2)

where the sum is taken over all the possible configurations (or paths){x(1), . . . , x(N)} and
Zµ(z) is the normalization factor defined so that

∑z
x=−z Pµ(z, x) = 1. It is straightforward

to calculate this probability by the transfer matrix method [1]. In figure 3, an example of
the spatial variation ofPµ(z, x) of a system ofN = 100, T = 0.3, g = 0.01 andσ = 0.5
on a certain sample of random potentialµ is displayed by a density plot; the intensity
increases as the colour becomes brighter. We recognize that most of the probability density
is confined in the whitetubeswhich are understood as the thermally active excited states.
In the dynamics, they presumably serve astraps [13], which tend to trap the polymer for
long times. On the other hand there are blackvoids between the tubes which presumably
serve as free energy barriers. It is quite remarkable that the tubes form a very complicated
network which consists of various sizes of loop-like structures. It is qualitatively consistent
with the prediction by Hwa and Fisher [4] who have predicted a broad distribution of the
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Figure 3. The density plot ofPµ(z, x) (see text for definition)
on a certain sample of random potentialµ (N = 100, T = 0.3,
g = 0.01 andσ = 0.5).

Figure 4. A time sequence ofx(80) on the same system shown in
figure 3. The positions of the fourtraps a, b, c and d are indicated.

size of the loops. As the temperature increases, one can observe that the diameter of the
tubes grows and the structure itself changes on large scales as predicted in [3].

From the above observation, we speculate that the dynamics of the polymer roughly
consists of two kinds of elementary processes. One is the fast fluctuation within the tubes
(traps). The other is the thermally activated jump between such tubes, which is analogous
to the droplet excitations in spin-glasses. Actually, these two different processes can be
visually monitored rather easily as the following. In figure 4 we plot the time sequence
of the segmentx(80) on the same systems shown in figure 3. The data are averaged over
every interval of 103 (MCS) trying to mask small scale fluctuations. Apart from the remanent
small scale fluctuations, which are understood as the fast fluctuations within each trap (tube),
the coarse-grained process is apparently understood as jumps between the four traps which
correspond to the four major peaks ofP(80, x) (white tubes in figure 3 atz = 80).

The thermal jumps between the traps must go over the free energy barriers which
lie between them (black voids in figure 3). The scaling property of the relaxation times
of the thermal jumps between the tubes has already been studied in the context of the
aforementioned transport problem in the vortex glass phase [7]. For the convenience of
later discussions, we summarize it here. For example, suppose that there is a loop-like
structure of tubes as schematically shown in figure 5. Let us denote its transverse size as1.
Then the free energy barrierFB(1) associated with the thermal excitation over the loop,
which we hereafter callloop excitationfollowing [7], is expected to scaletypically as

FB(1) ' a(T )1α (3)

where a(T ) is some temperature-dependent constant. The value of the exponentα is
expected to be12 in 1+1 DPRM [4]. Note that near the free end of the polymer, the tubes do
not form complete loop structures but ratherU-shaped structures in which one side of the
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Figure 5. A schematic picture of a loop excitation. The polymer (bold curve) inside the
left tube jumps over the void to the right tube and vice versa.

Figure 6. The procedure of the temperature
quench experiment.

ends of the tubes is left open. But we expect that the free energy barriers of such thermal
excitations scale in the same way as thecompleteloop excitations. The relaxation time of
the loop excitation is expected to scaletypically as

τ(1) ∼ exp(FB(1)/T ) ' exp

(
a(T )1α

T

)
. (4)

The broad distribution of the size of the loops [4] implies broad distribution of relaxation
times.

4. Procedure of the temperature quench experiment

The numerical experiment is done in the following way (see also the illustration in figure 6).
At first, a random initial configuration is prepared. Then the system is allowed to evolve for
tw (MCS) by the heat-bath Monte Carlo dynamics of a certain temperatureT . This means
that the polymer is forced to approach the equilibrium state of temperatureT being attached
to a heat bath of temperatureT . After this tw (MCS) of ageing, the polymer’s configuration
is stored and copied to a replica system. Then we let the two systems, say replicas A and B,
continue the relaxational dynamics using the same random numbers (same thermal noise of
the heat bath) but applying a small tilt fieldh to system B.

We measure the following dynamical overlap function as a probe to the relaxational
dynamics of the unperturbed system (replica A). It is defined as

q(tw + t, tw) ≡
〈

1

N

N∑
z=1

δ(x(A)(z, tw + t), x(A)(z, tw))

〉
(5)

whereδ(x, y) is the Kroneker delta andx(A)(z, t) (z = 1 . . . N) represents the configurations
of the polymer att (MCS). Here the bracket〈· · ·〉 denotes the average over statistically
independent ageing processes and the overbar· · · the average over different realizations
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of random potentials. The above overlap function is defined in analogy with the spin-
autocorrelation function of the spin-glass models and conveniently measures the ‘closeness’
between the configurations at two different timestw + t and tw. In the static limit, it is
expected to converge to the expectation value of the overlapqrep between two real replica
systems which has been introduced by Parisi [5] and studied numerically by Mézard [6],

qrep = qstatic ≡ lim
t→∞ lim

tw→∞ q(tw + t, tw). (6)

We measure the dynamical response to the tilt field att (MCS) after tw (MCS) of ageing
as the distance between the temporal positions of the free endx(N) of the two replicas A
and B, which we denote asx(A)

e (tw + t) andx(B)
e (tw + t),

δxe(t; tw) ≡
〈
x

(B)
e (tw + t) − x

(A)
e (tw + t)

〉
. (7)

Note that〈· · ·〉 encloses bothx(A)
e (t) andx(B)

e (t) because we use the same random numbers in
replicas A and B in our procedure. This definition is slightly different from the conventional

one
〈
x

(B)
e (tw + t)

〉
−

〈
x

(A)
e (tw + t)

〉
. However our present choice is more efficient in practice

because it provides essentially the same result but with less noise.
In equilibrium, the response function (7) is related to the correlation function

Ce(t1, t2) =
〈
x

(A)
e (t1)x

(A)
e (t2)

〉
(8)

as

δxe(t; tw) = h

∫ tw+t

tw

Re(t + tw, t ′) dt ′ = βh [Ce(tw + t, tw + t) − Ce(tw + t, tw)] (9)

by the fluctuation dissipation theorem (FDT) of the first kind,

Re(t1, t2) ≡ δxe(t1 − t2; t2)/δh(t2) = β∂Ce(t1, t2)/∂t2 (10)

provided thath is small enough (linear response regime). Note that in the static limit
tw → ∞ and t → ∞ of (9), we get the ordinary staticFDT,

〈xe〉h = lim
t→∞ lim

tw→∞ δxe(tw; t) = βhχ (11)

where the susceptibilityχ is given by

χ = 〈
x2

e

〉 − 〈xe〉2. (12)

We performed a series of temperature quench experiments on the system with various
sizesN = 20, . . . , 300, and temperatures atT = 0.1, . . . , 0.5. The parametersg and σ

are fixed atg = 0.01 andσ = 0.5. The average over 104, . . . , 102 samples of random
potential were done depending on the system size. In order to ensure thath is small enough
so that the linear response condition is satisfied, we calculated the disorder averaged static
susceptibilityχ (see (12)) and〈xe〉h by the transfer matrix method [6] and checked that
(11) is well satisfied.

5. Results

5.1. Crossover behaviour of the dynamical overlap function

We first present the results of the dynamical overlap function defined in (5) on the
unperturbed system (replica A). The following analysis is done on the data ofN = 300 at
0.1 < T < 0.5. The observation was done in the time window (0< t < 104 (MCS)) for



Off-equilibrium dynamics of (1+1)-dimensionalDPRM 1427

Figure 7. The waiting timetw dependence ofq(tw, tw + t): N = 300, 102 samples at (a)
T = 0.1 and (b) T = 0.2. The waiting time increases astw = 2, 4, 8, . . . 1024 (MCS) from the
bottom to the top curve.

tw = 2, 22, . . . , 210 (MCS). The data atT = 0.1 and 0.3 are plotted by a double logarithmic
plot in figure 7. The remarkable feature is that the data curves show strong waiting timetw
dependence and each of them drops off rapidly at aroundt ∼ tw. It is presumably understood
as a manifestation of the crossover from the quasi-equilibrium behaviour (t � tw) to the
off-equilibrium behaviour (t � tw), i.e. ageing effect. Actually we see later that it coincides
with the FDT violation which also occurs at aroundt ∼ tw.

The quasi-equilibrium regime (t � tw) begins with an initial fast decay and crosses over
to a much slower decay, which is only visible on the data curves of sufficiently largetw.
Unfortunately we cannot determine the asymptotic functional form (tw � 1) of the latter
slow decay at this moment. However, the scaling analysis which we discuss later suggests
an algebraic law (see equation (17) below) with very small exponentx(T ) which varies
with the temperature as shown in figure 10. On the other hand, the off-equilibrium part is
fitted well by an algebraic law

q(tw, tw + t) ∼ t−λ(T ) (t � tw) (13)

where the exponentλ(T ) also depends on temperature as shown in figure 10. It is interesting
to note that these characteristics of the crossover behaviour are very similar to those
originally found by Rieger [10] in the spin-autocorrelation function of the three-dimensional
Edwards–Anderson spin-glass model in the spin-glass phase.

We now analyse the scaling properties of the dynamical overlap function. We try the
scaling form

q(tw, tw + t) ' C(tw, T )q̃T (t/tw) . (14)

As an example, the scaling plot of the data ofN = 300, T = 0.17 is shown in figure 8.
The parameterC(tw, T ) was chosen so as to scale the off-equilibrium part (t/tw � 1) as
well as possible. It turns out that the initial fast decay part, which we mentioned before,
does not fit on the master curve of thet/tw scaling. In practice, we could obtain the scaling
plot shown in figure 8 discarding the data oft 6 10 (MCS). At higher temperatures we have
to discard more data to obtain good master curves.

As expected, the scaling function behaves asq̃T (y) ∼ y−λ(T ) at y � 1 with λ(T ) which
we found in (13). On the other hand the constantC(tw, T ) turns out to be well fitted by an
algebraic law oftw,

C(tw, T ) ∼ t−x(T )
w (15)
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Figure 8. A scaling plot of the
dynamical overlap function on the
system ofN = 300 andT = 0.17
by the scheme (14). The scale of
the vertical axis is arbitrary. The
broken line represents the power law
t−x using x obtained by the fit (15).
The full line represents the power law
t−λ with λ obtained by the direct fit
of the t/tw � 1 part.

Figure 9. Double logarithmic plot of
C(tw, T ) versustw at T = 0.17, 0.25, 0.30,
0.40 and 0.50. The scale of the vertical axis
is arbitrary. The broken lines are the fit by
the algebraic law (15) withx(T ) presented in
figure 10.

as shown in figure 9. The exponent−x(T ) obtained by this fitting varies with temperature as
presented in figure 10. AtT < 0.17, −x(T ) becomes too small to be determined precisely.

Using (15), we can rewrite (14) as

q(tw, tw + t) ' t−x(T )φT (t/tw) (16)

where φT (y) is related toq̃T (y) in (14) by φT (y) ≡ yx(T )q̃T (y). Note that this scaling
form is also identical to that originally found in the three-dimensional spin-glass model by
Rieger [10]. The new scaling form (16) implies that the quasi-equilibrium part (t/tw � 1)
behaves as

q(tw, t + tw) ∼ t−x(T ) (tw � 1 andt/tw � 1) . (17)

However, as can be seen in the master curve in figure 8, the crossover takes place rather
gradually and the left branch of the master curve (t/tw � 1) seems to decay faster than the
expected algebraic lawt−x(T ) with x(T ) obtained from (15). This discrepancy implies that
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Figure 10. Temperature dependence of the
exponents:λ(T ) and x(T ). They are obtained
from data of (N = 300, 102 samples).

Figure 11. Saturation of ageing effect due to
the finite size effect (N = 20, T = 0.5, 500
samples).qrep was calculated by the transfer
matrix method.

we have not yet attained the asymptotic scaling region (tw � 1) of the quasi-equilibrium
part (t/tw � 1). Unfortunately we could not accomplish it with our available computational
power.

Lastly we discuss the finite size effects. As far as the system sizeN is finite, the size
of the largest loop excitation and thus the associated maximum relaxation timeτmax(N)

available in the system must be finite (see (4)). Thus we expect that system is fully
equilibrated if we taketw larger than a certain equilibration timeteq(N) which may be
comparable with theτmax(N). The finite size effect appears in the dynamical overlap
function as follows. In figure 11 the data on the system ofN = 20 andT = 0.5 are shown
as a typical example. It can be seen that the waiting timetw dependence on the dynamical
overlap function saturates at some finitetw as tw is increased: the curves do not show any
further tw dependence whentw exceeds some characteristic timeteq(N). In the example
shown in figure 11, it is larger than 2048 but less than 16 384 (MCS). We have checked that
teq(N) increases as we increase the system sizeN . It is also recognized that the dynamical
overlap function saturates to the static limitqstatic (see (6)) whent � teq. The value of
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qstatic is nearly equal toqrep obtained by the transfer matrix method which uses two real
replicas [6]. Thoughqrep is non-zero in finite systems, further calculations by the transfer
matrix method on larger systems show thatqrep decreases as the system sizeN increases
and vanishes in the thermodynamic limitN → ∞ (see [6]).

5.2. Violation ofFDT

We next present the results of the response to the tilt field defined in (7). The curves in
figure 12 show theLHS and RHS of the FDT relation (9) at different waiting timestw = 40,
200 and 1000 (MCS) on the system ofN = 20 at T = 0.2 with the tilt field h = 0.1 by
a semi-logarithmic plot. The quench experiment was done over 104 different samples of
random potentials in order to take a sufficient average over the disorder. The curves of
the LHS of (9) (correlation) strongly depend on the waiting timetw. On the other hand,
the curves of theRHS of (9) (response) do not seem to have significanttw dependence and
almost seem to merge with each other within the numerical accuracy. Comparing with the
data of larger system sizes, we checked that the data are not spoiled by finite size effects

Figure 12. FDT relation (N = 20, T = 0.2, 104

samples). The top three curves are theLHS of (9)
(correlation) of different waiting timestw = 40, 200
and 1000 (MCS). The three curves below are theRHS

of (9) (response) of the correspondingtw.

Figure 13. Functional form of the response
function (N = 30, T = 0.20, 104 samples and
N = 60, T = 0.40, 5× 103 samples with
h = 0.03). The full line represents the log(t)2

law (18).



Off-equilibrium dynamics of (1+1)-dimensionalDPRM 1431

Figure 14. The density plot ofP(z, x) on a certain
sample of a small system at a high temperature (N = 20,
T = 1.00).

within this observation time window (0< t < 104 (MCS)). However, it is difficult to get
smooth data on larger systems because the sample-to-sample fluctuations between systems
of different random potentials are larger on larger systems.

As is clear from the figure, theFDT relation is satisfied in the regimet � tw but broken
in the regimet � tw. It is again clear evidence of the crossover from quasi-equilibrium to
off-equilibrium dynamics, i.e. ageing effect. SimilarFDT violation was previously found in
the spin-glass phase of the three-dimensional spin-glass models by Monte Carlo simulations
[11, 12]. However, there is an important difference: in the spin-glass models both the
response and correlation functions strongly depend ontw while in the present model the
response does not seem to havetw dependence. This is understood as follows. As the tilt
field pulls the free end of the polymer, it moves by successive local thermal excitations
around it, while the rest of the system is indifferent to the existence of the tilt field. We
expect that the free energy barrier of such thermal excitations scales as (3). Thus the
response will scale the same way as thetypical transverse size of a loop excitation which
becomes active after waiting timet ,

δxe(t; tw) ∼ log(t)1/α. (18)

In order to clarify this scaling form, we performed longer simulations up to 105 (MCS). In
figure 13 we show the double logarithmic plot ofδxe(t; 0) versus log(t) on the system of
N = 30, T = 0.20 andN = 60 at T = 0.30 with h = 0.03. It can be seen that the
behaviour is consistent with (18) withα = 1

2 and thus supports the above argument. The
data on different system sizes and at different temperatures show similar behaviour except
that data of smaller systems show saturations within the observation time window.

Lastly we consider the extremely-high-temperature case in finite systems. As we
mentioned before, the diameter of the tubes grows as the temperature increases [4]. Then if
the system is too small, a single tube swallows up the whole system and the thermal jumps
between the tubes disappear. In figure 14 an example is shown of a free energy landscape
of such a case, the density plot ofPµ(z, x) of a system ofN = 20 atT = 1.0 on a certain
random potential. Roughly, only a single big tube can be recognized. In such an extreme
case, we found no ageing effects. TheFDT relation is fulfilled in the wholet range up
to the static limit as shown in figure 15. At around 103 (MCS), they saturate to the static
limit, 〈xe〉h or h/T χe (see (11)) calculated by the transfer matrix method. In addition, the
dynamical overlap function does not show anytw dependence. These facts suggest that the
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Figure 15. The FDT relation (9) of a small
system at a high temperature (N = 20,
T = 1.00, h = 0.1, 500 samples) fortw =
4, 32, 256 (MCS). The horizontal line ish/T χe

whereχe (see equation (12)) is obtained by the
transfer matrix method.

thermal jumps between the tubes, i.e. loop excitations, are the essential processes to bring
about the observed ageing effects.

6. Conclusion

The relaxational dynamics of a(1 + 1)-dimensionalDPRM has been investigated by Monte
Carlo simulations which mimic theIRM experiments in spin-glasses. The ageing effect
appears as the systematic waiting time dependence on both the dynamical overlap function
and theFDT violation. The dynamical overlap function shows a clear crossover from slow
quasi-equilibrium decay (t � tw) to fast off-equilibrium decay (t � tw). The latter is
well fitted by an algebraic law whose exponent depends on temperature. Thet/tw scaling
scheme works well and it also suggests another algebraic decay in the quasi-equilibrium
part. However, we could not confirm the latter directly with our computational power. On
the other hand, the response to the tilt field grows as log(t)2 (18) independently of the
waiting times, which supports the assumed scaling properties of loop excitations (see (3)
and (4)). Concerning the fact that it does not showtw dependence, this model appears rather
trivial compared with, for example, spin-glasses in which there are also dramatic effects in
the response function so that one can actually observe the ageing effects in experiments by
measuring the magnetization [7, 8]. None the less, other aspects of the ageing effect are very
similar to those found in the spin-glass phase of three-dimensional spin-glass models [9–
11]. Hence we believe that this model provides a good testing ground for various theoretical
ideas of the slow dynamics of quenched random systems.

The important elementary processes to bring about the observed ageing effect are the
loop excitations, i.e. thermal hoppings between the traps (tubes) in the free energy landscape.
They have been actually demonstrated by direct monitoring of the time sequences. Thus the
equilibration process is understood as the slow growth of a quasi-equilibrium domain driven
by successive loop excitations. Note that this growth mechanism of the quasi-equilibrium
domain is essentially the same as that proposed in the spin-glass models in which droplet
excitations drive the growth of the domain [2]. From (4), we expect that its transverse size
R(tw) grows with the waiting timetw as

R(tw) ∼ log(tw)1/α. (19)
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However, the scaling properties of the dynamical overlap function are not trivial. Although
they turned out to be quite similar to those found in the spin-glass model [10], they cannot
be explained by simply borrowing the assumptions of the above-mentioned droplet theory
of spin-glass [2]. In the droplet theory, it is assumed that

q(t, 0) ∼ R(t)−λ (20)

whereq(t1, t2) is now the spin-autocorrelation function andλ is some unknown exponent [2].
(Hereλ is the notation of [2] and different fromλ(T ) defined in (13).) But we do not have
any reason to believe that such a relation exists in the present model, and actually our
result (13) cannot be consistent with (19) if we assume (20). In the study of a spin-glass
model [10], it is argued that (13) can be consistent with (20) if one assumes that the free
energy barrier grows logarithmically with its transverse size1 rather than algebraically so
thatR(t) grows algebraically with a certain temperature-dependent exponent. If it is also the
case in the present model, the response function (7) should be fitted by such an algebraic
law. However, our data of the response function show systematic curvature in double
logarithmic plots and do not prefer such an algebraic law but the logarithmic law (18).
Thus we conclude that the simple relation (20) does not exist in the present model. The
scaling properties of the dynamical overlap function require other ways to explain them.

The important feature we recognize in figure 3 is that the tubes are grouped together to
form some very complicated network. We already know how the relaxation time associated
with each single loop excitation scales with its transverse size (see (4)). However, there
is an obvious but important rule: a loop excitation canflip only when some parts of the
temporal configuration of the polymer actually stay either side of the loop, in other words
the emptyloops cannotflip. It should also be noted that the polymer isnot allowed to be
broken into pieces during the dynamical process. Thus the entire loop excitations built in
the system cannot becomeactive simultaneously but only those which are associated with
the sequence of the loops which contains the actual temporal configuration of the polymer.
From the above considerations, it is clear that the information on the connectivity of the
loops is an important ingredient to describe the whole dynamics of the polymer properly.

Let us now consider the dynamical overlap function (5). It can be roughly interpreted
as theprobability that the segments of the polymer return to the original traps in which
they initially stay after jumping around other traps in the network. Here we need the
detailed description of the dynamics mentioned above since the probability is the sum of
the probabilities associated with all of the possible trajectories which make such return trips.
Each of these trajectories consists of different sequences of loop excitations which vary in
size and thus have different relaxation times. It is unlikely that there is a singletypical
mode whose probability dominates the total probability. On the other hand, the response to
the tilt field may not depend directly on such details but just scales as theexpectation value
of the transverse size of the local loop excitation around the free end which can become
active after waiting timet . It is possible that such an expectation value is dominated by the
contribution from thetypical mode whose relaxation time is comparable witht . We think
this is the reason why we could obtain (18) using only the scaling property of single loop
excitation.

Although the network apparently looks quite complicated, a most simple characterization
of it will be the following. The network structure consists of loops of various sizes which
are hierarchically nested so that larger ones enclose smaller ones inside. (A similar picture
was proposed before by Villain concerning the organization ofdropletsin spin-glass phase,
see [14].) From this simple picture, the dynamics can be regarded as one of the hierarchical
diffusion processes which have been intensively studied in rather abstract contexts, for
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example theultradiffusionmodels [16]. It is interesting to note that in the latter models the
autocorrelation function (return probability) shows asymptotically algebraic decay with some
temperature-dependent exponent, which is also the case in the dynamical overlap function
in the present model. Furthermore, it has already been shown by Sibani and Hoffmann that
hierarchical diffusion processes can show ageing effects [15]. Thus it will be fruitful to
construct a phenomenological theory of the ageing effect of the present model from this
point of view. A study in this direction will be reported elsewhere [17].

Note added in proof. We received a preprint by L F Cugliandolo, J Kurchan and L Drossal who studied the
off-equilibrium dynamics of a manifold in random potential using mean-field theory [18]. It would be valuable to
compare the results of the mean-field approaches with the simulations of low-dimensional systems in future works.
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